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ON EXCEEDANCE POINT PROCESSES FOR STATIONARY SEQUENCES

UNDER MILD OSCILLATION RESTRICTIONS

by

M.R. Leadbetter

and

S. Nandagopalan

Summary:

- It is known ([lQ that any point process limits for the (time normalized)

exceedances of high levels by a stationary sequence is necessarily Compound

Poisson. under general dependence restrictions. This results from the

clustering of exceedances where the underlying Poisson points represent cluster

positions, and the multiplicities correspond to cluster sizes.

JJer-e -we investigate a class of stationary sequences satisfying a mild ,

local dependence condition restricting the extent of local rapid oscillation.

For this class, criteria are given for the existence and value of the so-called

'extremal index" which plays a key role in determining the intensity of cluster

positions. Cluster size distributions are investigated for this class and in

particular shown to be asymptotically equivalent to those for lengths of runs

of consecutive exceedances above the level. Relations between the point

processes of exceedances, cluster centers, and upcrossings are discussed.

1k
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1. Introduction and basic results.

The paper [1]. provides limiting results for the (time normalized) point P

process Nn of exceedances of a high level un by a stationary sequence (En}. It

is shown, for example, that typically a limit for Nn must have a Compound

Poisson form where the underlying Poisson points may be regarded as positions

of "clusters" of exceedances and the multiplicities correspond to cluster

sizes, i.e. the number of exceedances in a cluster.

Let f i, 2 ... be a stationary sequence. Write Mn = max(f l- 2 . ... n and

for T > 0 let un(T) denote levels such that n(1-F(u n())) -* T, where F is the

distribution function (d.f.) of each f i" Then it is often the case that

P{Mn un (T)} -
+ e- OT where 8 is a fixed parameter (0 1), referred to as the

"extremal index" of the sequence. It is known that 6 = 1 for i.i.d. sequences

and many dependent cases, and that 0 > 0 for "almost all" cases of interest.

For such levels u (T) it may be shown under general conditions that the
n

intensity for the Poisson limiting cluster positions in Nn is simply OT.

These results require a restriction on the long range dependence of the

sequence, and two such conditions (D(un), A(un), defined below) are useful. It

is well known that under a further short range dependence condition (D'(un) -

cf. [3] Section 3.4) it may be shown that 8 = 1 and the Compound Poisson limit

for N becomes Poisson. In this paper we consider a special but much widern

class of sequences subject to a weaker condition which restricts rapid

oscillations - here called D"(u) - than D'(un), and for which all values of 0

in (0,1] are possible. It will be shown for this class that the joint

distribution of f1 and f2 determines whether the extremal index exists, and

gives its value. Finally for this class clusters of exceedances may be simply

identified asymptotically as runs of consecutive exceedances and the cluster



sizes as run lengths.

Section 2 contains the theory surrounding the maximum and the extremal

index when the local dependence condition D"(un) holds, and in Section 3

asymptotic properties of point processes of exceedances, upcrossings and

cluster centers are discussed. Notation used throughout will include M(E) to

denote max(fi: i e E} for any set E C (O,n] (Mn = M[1,n]). A time scale

normalization by I/n will be used to define various point processes on the uniL

interval. In particular the exceedance point process N is defined withn

respect to a sequence of "levels" {u n} by

(1.1) N (B) = #{i, li~n: i/n s B, > U}
nn

for each Borel subset B of (0,1]. This involves a slight awkwardness of

notation in that M(E) is defined for subsets E of (0.n]. whereas Nn(B) is

defined for B C (0,1] when writing an equivalence {Nn(B) = 0} = {M(nB) Un}

but a more intricate notation does not seem worthwhile.

The long range dependence condition D(u n) is defined as follows.

Abbreviate Fi . .-,(uu ... u) to F, - (u). Then for a sequence {un}. D(un)

is said to hold if for each n, l i1<ii2 - <1(Jl. .<jp .n, ji 1p >e we have

IF1 * * j - p(U n) F11 * U Fi * * (U n)I an~e

where a -*0 for some en=o(n). Frequently integers kn will be chosen so
n.R n e

that

(1.2) kn an,en k/n-0

Note that, by D(u), this holds automatically for bounded kn-sequences but

k n can clearly be chosen so that (1.2) is satisfied. Note also that the

condition D(un) is of similar type to (but much weaker than) strong mixing. In
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the following basic result and throughout, m will denote Lebesgue measure. The t

result is a slightly more general form of Lemma 2.3 of [1].

Lemma 1.1 Let D(un) hold and {k n) satisfy (1.2). Let Ji (=Ji.n ) ' lik n be

k
n

disjoint subintervals of (0,1] with knn 1

knn
n

particular, if m(U J) -+a > 0). Then
1

k k I
n n

(i) -Yn = P{M(U nJ) un} - PM(nJi) Un} + 0 as n-

k
n

(ii) If J is a fixed subinterval of (0,1] with m(J) = a, U J C J and
1

k
n

m(U Ji) - a, then
1

k
n

(1.3) P{M(nj) u un} - P{M(nJi d u} 0.

Proof: The assertion (i) is proved by arguments very close to those used in

Lemma 2.2 of [1]. The main difference is the complicating feature in that here

we do not assume that m(Ji) en/n for each i, but clearly the intervals Ji for

which m(ji, < R /n form a set whose total measure cannot exceed k e/n - 0.

The proof of (i) will not be given in detail, though its flavor may be seen

from the sketch for (ii) below. It is in fact very simple in the usual

situation where exceedances in short intervals are unlikely in the sense that

kn P{M e >u n 0, and is made more lengthy to cover cases when this does not
n

hold by showing that both terms of (i) actually tend to zero.

(ii) (sketch of proof). By stationarity the intervals J may be taken to
k

nbe abutting and U Ji=In J.-I = I taken to be intervals without affecting
1 ~ ' n n

, , , " , % " % % % %' .. % % ' * % * *'. S % *-% .*1 ' %
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either term of (1.3). and m(I ) -0. By (i). (ii) will follow if
n

-n =P{M(nIn) Un} - P{M(nJ) Un} 0
n n n n

and it is sufficient to show that if v' has a limit as n -* o through an

subsequence S. then that limit is zero. This is immediate if P{M(nI:) > un}

tends to zero, since this probability dominates 7'. Otherwise
n

P{M(nI*) > u} -.a > 0 as n - through some subsequence S' C S. Clearly

en( ) copies In~j of I* each separated by at least /n. may be placed innnj n' n

0
In , and P{M(nI n) Un} thus dominated by P{nn(M(nIn.j) Un U)}. By appropriate

16

choice of 0n this probability may be approximated by P n{M(nI n) Un } (using

D(un)) which tends to zero as n - through S'. Hence the first term in 1'
n n

tends to zero and it dominates the second, which thus also tends to zero. 03

2. Extremal theory under D"(u ).

If D(un) holds, and kn are integers satisfying (1.2), and k n(l-F(u n) - 0,

n nnrn : En/kn], define

rn-l
n

D"(u n): n I P{f 1 >U, E un < fj+l -+0.
J=2 j

and write p(u) = P{fI u < f2 }. We say that {fn) has an upcrossing of u at j

if fi- 1  u < fJ, so that p4u) may obviously be interpreted as the mean number

of upcrossings of u per unit time. (This notation will be used throughout this

and the next section without comment). The condition D"(u n) involves a weaker

restriction than D'(u n) of [3] which is used to guarantee that 6 = 1, whereas

under D" all values 0 0 6 1 are possible. For most of our purposes D" can be

slightly weakened by replacing "f,>u" by "fi thus restricting the local

occurrence of two or more upcrossings, but the present form is convenient for

if M'r o r. 'I .% - M % % N .
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use here.

Proposition 2.1. Suppose D(un), D"(u hold for given constants {u} {k}
n n' n* n'1

(r} as above and write

v = lim inf n(un), v' = lim sup nw(un).

Then

jim inf P{M n  u = e lim sup P{Mn Un} n) e

In particular P{M < un} - e if aid only if nju(} v.
nnn

r -
n

Proof: Write A= un < fj+l} . Then {Mr >un ={f1 )uU U A. so that
j~~ n j= r1

r -1 r -1n n

. P(A - P(Ai nAj) £p(Mr >u) l-F(un) + 7 P(A.)
j=l " li<j~rn-1 n J=l

Hence, sine, P(A.) - (u ), (and using stationarity).

(rn-1)iA(u) - Sn P{M r  > u} 1-F(un) + (rn-1)lt(Un)
n

n ASn = n J=2P{fI > Un'~ Un< j+l} =  (kn1 ) D"(Un)."
in whichS =r > < n by

n nJ=2 n

Multiplication by k yields

_n_ %. F-n0

L(U n )(1 + o(1)) - o(l) kn P{M r > u n} < (Un) + 0
n r-n

From which it follows that

lim sup knP{Mrn > un} v', lim inf kn P{M(rn) > u} = v.

Now by Lema 1.1.



knP{Mr >Un}k'n r n)k
P{Mun < U} =(l- k ) n+ o(1).nn n

n

For a > 0. knP{M r > u} v - for sufficiently large n. so that P{M n  Un} <
n

(1 _ nL-  n + o(1) - eV+ and hence lim sup P{Mn U e Similarly

n

P{M- V kn + o(1) for infinitely many values of n so that 1'
n P

-- ei
lir sup P{M ( un} > e - - and hence lir sup P{n u } e , showing that L1n n n n
lim sup P{M n  U} = e- V . Similarly lim inf P{M < Un} = e ,as required.

Corollary 2.2 If I = (a jb ] are disjoint subintervals of (0,1], lj~k, then

under the conditions of Proposition 2.1. if ru(u) V.

k k
P{l (M(nI) U)} - exp{-v I (b -aj)}

k 1

Proof: It follows from Lemma 1.1 that P{n(M(nIj) Un)} - } 0
1 1

so that it is only necessary to show the result for k=l. Let kn be as in

Proposition 2.1. r n=[n/k]n Then it follows readily from Lemma 1.1 and

Proposition 2.1 that

k
P n{Mr  Un}= P{M n < un + o(1) e - V

n

and hence that for 0 < a ( b 1,

([nb]-[na])/r 
C

P{M((na,nb]) u} = (P(Mr n u )

n
kn(b-a)(l+o(1))

(P{Mr Un)
n

e-v(b
-a)

as required to complete the proof. 0

V V V V %"
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We consider now levels U n=U n(T) defined to satisfy n(1-F(Un ()) ) -*

Note first the simply proved relation

(2.1) Iu) = P l u < f21 ".?1

= P(E2 - Ulfl > u} (1-F(u))

Proposition 2.1 may be applied as follows.

Proposition 2.3 Assume D(Un), D"(u n) hold for un u (T), some T > 0. Write

0 = lim inf P(f2 
< Un(T)IEl > Un(T')), 0' = lim sup P{f 2  U Un(T)f1 > Un(T)}-

-OT -O'T
Then lim sup P{M n un(T)} = e lim inf P{M n  un(T)) = e

Proof: By (2.1)v

v = lim inf n u n(r)) = OT, v' = lim sup rU(un(r)) = O'T

and the results follow at once from Proposition 2.1. 0

-OTL

If P{Mn < U n(T)} - e for all T > 0 the parameter 0 will be referred to

as the extrema. index of the sequence {n}. It is known (cf. [3] Theorem PkI

3.7.1) that if D(Un(T)) holds for each T > 0 and P(Mn  un(r)) converges for

some T > 0. then P(Mn  un(T)} converges for all T > 0 and the limit has the

form e for fixed 0. 0 8 1, i.e. the extremal index then exists. The

following result, gives a convenient existence criterion assuming also D"(un), 0

and follows immediately from Proposition 2.2 and these observations.

Corollary 2.4 Assume D(un(T)). D"(UnIT)) hold for each r > 0. If

P Un I >
(T)If1  (T)} -* 0 for some T > 0 then convergence to 8 occurs for

all2 T , nd >O -n

all T > 0, and {In} has extremal index 0. Conversely if P(Mn _ Un(r)} - e

for some T > 0. {[n} has extremal index 0 and P{f 2 
- U(r)If 1 > U( 0)} -*0 for

all T > 0. 0
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The following lemma, giving alternative expressions for 0 involves

stationarity but does not require any dependence condition.

Lemma 2.5 If nI(u) - v the following are equivalent:

(i) P{(E2  UnIfl > u}

(ii) n(l-F(u)) v/0 (i.e. un = u (V/))

(iii) n(l-F.1 2 (un))  v + v/o. (F 2 (un) = P{fl U2 n U}).

Proof: Equivalence of (i) and (ii) is immediate from (2.1). That of (ii) and

(iii) follows since

n*(u) nP{g 1  un < f = n(F(un) - F,.2 (un))

- n((l - F1 2 (un)) - (1-F(un))) 0

Write now un(v) to denote a sequence un satisfying riU(un) v and F(U n 1.

The next result shows that n(l-F(u n(V))) -+ v/8 when f n has extremal index 6.

This will be denoted by the slightly imprecise, but convenient statement

lu (V) = u~u6'

Proposition 2.6 (1) Suppose D(un(v)). D"(u n(v)) hold for all v > 0. and {n}

has extremal index 0 > 0. Then un(V) = U(v/0)) (i.e. n(l-F(un(V))) -+ v/0 as

n -4 00).

(ii) Conversely suppose D(un(T)). D"(un(T)) hold for all T > 0. If for
some T.O Un(T) = U (OT). then u (T) = Un(OT) for all r > 0 and 6 is the

n n n n

extremal index of {fn. -n

Proof: To show (i) note that from Proposition 2.1 P(Mn un(V)} -+ e and

hence P U()} - e-V/ ([3]. Theorem 3.7.2) where M is the maximum of n 1'

i.i.d. random variables with the same distribution F as the fi" That is
Fn(- -V/0 Iu
FUn(V)) - e from which it follows at once that n(l-F(u (v))) - v/0.

P~ ~~~~ ~~~~ 'dW ''V . ~ ~'- ~ Z~Y < :
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(ii) By Lemma 2.5, P{2 U Un(T)I > 
Un(T)) 0. hence by Corollary 2.4, this

holds for all T and 0 is the extremal index. In particular,

P(M u (T)) + e- OT for all T. By Proposition 2.1. therefore, un(r) = Un(OT)
n n n (T n

which completes the proof. 0

3. Point Processes of Exceedances and Upcrossings

Let N denote the exceedance point process for a level u as defined bynn

(1.1), viz. Nn(B) = #{i, li<n: i/n E B. fi > Un} for B C (0.1]. Further,

write N for the "point process of upcrossings", defined on (0.1] as the pointsn

itsuch that f- 1  U ( i.e. R(B) = #{i. 1 I n: i/n E B, - -< Un }.

It is readily shown that N converges in distribution to a Poisson Process
n

under D. D".

Proposition 3.1 Suppose D(un), D"(un) hold for a sequence un =iUn(v), i.e.
) , d

n(i(u ) v. Then N -+ N where N is a Poisson Process on (0,1] with intensity
n n

V.

Proof: This follows in a standard way from Kallenberg's Theorem ([2] Theorem

4.7):

(i) If 0 < a < b 1, EN([a,b]) - n(b-a)w(un) n (b-a)v = 9N((a,b])
PI~n(

(ii) 0 fn (a,b]) = 0} - P{M((na,nb]) < un} n Pfu[na]+l>un }  1 -rF(un)

and for disjoint subintervals (aib] of (0,1] 1 < i k,

k k
0 P{Nn(U (ai.bi]) = 0} - P{M(U (na.'nbi]) un )

K k(1-F(un)) - 0

and hence by Lemma 1.1 and Corollary 2.2,
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k k k
P{N (U(a.,bi]) = 0) = UP(M((nai,nb.]) + U} + o(i) - exp{-v I (b.-a.)).

n 1 1

k
But this expression is simply P{N(U(al,b,] ) = 0} thus verifying the conditions

1

of Kallenberg's Theorem. =

Corollary 3.2 If D(un). D"(u n) hold for a sequence un = Un) (n(l-F(u n T)
- d

and {n} has extremal index 6 > 0, then N - N where N is Poisson with

intensity OT.

Proof: Since n(l-F(u)) n T, (2.1) and Corollary 2.4 show that r((u) Or so

that the proposition applies with v = OT. 0

The above discussion hinges on the assumption D"(un). In that case (as

will be seen) each run of consecutive exceedances following an upcrossing may

be regarded as a "cluster" of exceedances. If D"(u n) is not assumed, clusters

may consist of groups of "exceedance runs". In general a simple and useful

definition of clusters is obtained by choosing kn to satisfy (1.2) and

n
considering the subintervals J,= ((i-l)r n/n, irnn], 1 i k n of (0,1].

Then the exceedances in any interval J, (i.e. points An C J, with f > U ) are
In j n

regarded as forming a cluster. The "cluster centers" may be defined in an

arbitrary way as any point in a Ji containing a cluster - here we use the

position of the first event in the cluster. The positions of the cluster

centers then form a point process N for which the following convergence holds
n

(proved similarly to Proposition 3.1).

N4N

'a.



Proposition 3.3. Suppose D(un) holds, where P{Mn un} n- eV for some v > 0.
*d

Then Nn -+ N where N is Poisson with intensity u. As in Corollary 3.2 ifn

U = Un(T) and { n} has extremal index 0 > 0 then N has intensity OT. I,

In cases where D"(un) holds, Nn and N are asymptotically equivalent asn n n

might be expected, in the strong sense of the next result. That is the cluster

positions essentially coincide with the upcrossings. It will be seen further

(in Proposition 3.5) that cluster sizes then also correspond asymptotically to

lengths of exceedance runs, so that clusters and exceedance runs may be

identified.

Proposition 3.4 Under the conditions of Proposition 3.1 the total variation of

the random signed measure -
- Nn  ies 1I,
n n n n

Proof: Define a point process N' to consist of all points of N together with
n n

any points n for which I > un. Then N'(B) > N (B) for each B C (0,I]. and
n n* n -n

IIN - N 11 = N'((0.1]) - N((0,1]) so that

(3 .1) 9IIN - 11 knP{f 1 > Un} 1 -0 by assumption.

Clearly also N'(B) N * (B) and IN'- NWIn = N'(0.1] - N*(0,1]. But
n nn n n n

9N'((0,1]) 9Nn((0,1]) + kn(1-F(un)) = (n-l)(u ) + o(l) -+ v and

9N*(0,] = k P{ M > un ] + o(l)-*v '-+
n n r nn

by Lemma 1.1 since P{M u} -P n(M u} 0 and P{Mn Un} e 1 Hence
n n r nnn n

g(N'(0,1] - N*(O,1]) -+ 0 showing that EIIN' - N*Ii -.0 which combines with
n n n n

(3.1) to give the desired conclusion.0
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The discussion of the limiting behavior of the actual exceedance point

process N requires a dependence restriction of similar type, but somewhatn

stronger than D(u n). Such a condition (A(u n)) is used in [1] where it is shown

that if P{M n u n) e-V for some v > 0 then Nn converges in distribution to a

Compound Poisson Process provided the cluster size distribution 7n(J) converges

for each j to w(j) a probability distribution on (1,2.3.... ). Here the Vn (j)'s

are simply defined to be the distribution of the number of events in a cluster

(i.e. in an interval ((i-l)rn/n. irn/n ] ) given that there is at least one.

The Poisson Process underlying this limit has intensity v and may be regarded

as the limiting point process of cluster centers. The distribution for the

multiplicity of each event in the Compound Poisson limit is just ir(j).

It is natural to ask whether the r n(J) may be replaced by the distribution

v'(j) of the length of an exceedance run defined more precisely byn

n(J) = P{E2 > Un' E3 > Un .... Ej+1 > UnE EJ+ 2  u n1El Un < u 2 1

That this is the case is shown under D"(un) by the following result

Proposition 3.5 Suppose D(u n) D"(u n) hold where un = u n(u) for some v > 0.

Then w (J) - wr(j) - 0 as n - for each j=l,2....
n n

Proof: It will be more convenient (and clearly equivalent) to show that

Qn(J)-Qn(J) * 0 where Qn(J) = n(s), Q(J) = I vn(s). Writing J for the
s=J s=Jn,.

interval (O,r n/n] we have for J 1.nq

Q n(J) = P{Nn(J) JINn(J) > 0} = P(N n(J) J}IP{N n(J) > 0}

k
= -n P{N n(J) j} (+o(1))

since P{Nn(J) ) 0} = P{M ) u V/kn (by Lemma 1.1, since P{Mn un} - e - )

n
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so that

k ni nn n

r -.1+1rn

Now

k 1 r nkn

and

r
o ~ {~ u ... u < f.. N (1L, n J-11 n -l nnfl n

-~f un..f- un < fi- fi+ ) n...f~ > u})

r
n

Pf 1 > u n U (E u n < fQ
J=i+2

rn

2 ~ > u n, f u n <. f o(l/n)
J=3

by D"(u n). so that

k r nj+l

Q(j) [ = av11 P~f Un-*fi- u n.E j>un'*E 1~j_ 1>u_}]l (1+0(1)) + 0(1).

Also

o .fiI~n f1 >u n ... fi->u} Pf 1 un--f- U~i> .. ..f.1  1 > u}

n
I )f Un , Un < f} = (1/n)

so that
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k r nj+l

n
kn(J vI ' fi= n iu...f~- > u})] (1 + o(l))+ o(1)

k+ n' 1

=QW(j)(+o()) + o(0) = QnW) + o00)

as required. 0
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